For what value of a does (1/7) ^3a+3 = 343^a-1?

The value of [tex]a[/tex] will be [tex]0[/tex] .
Exponent is a number or letter written above and to the right of a mathematical expression called the base.
We have,
[tex](\frac{1}{7})^{3a+3} = (343)^{a-1}[/tex]
Now,
Using the exponent rule;
[tex](\frac{1}{n}) ^a=n^{(-a)}[/tex]
So,
Rewrite the given expression;
[tex](\frac{1}{7})^{3a+3} = (343)^{a-1}[/tex]
[tex](7)^{-(3a+3)} = (7^3)^{a-1}[/tex]
[tex](7)^{-3a-3} = (7)^{3a-3}[/tex]
Now,
Using Distributive property;
i.e. comparing the powers;
[tex]-3a-3=3a-3[/tex]
⇒[tex]-3a-3a=3-3[/tex]
[tex]-6a=0[/tex]
[tex]a=0[/tex]
So, the value of [tex]a[/tex] is [tex]0[/tex], which is find out using exponent rule.
Hence, we can say that the value of [tex]a[/tex] is [tex]0[/tex] .
To know more about probability click here
https://brainly.com/question/219134
#SPJ3