Answer:
[tex]\$ 26 \frac{2}{3}[/tex]
Step-by-step explanation:
See the attached distribution table:
[tex]P(you\ win)=\frac{5}{12}[/tex]
[tex]P(Jessie\ win)=\frac{7}{12}[/tex]
If you win: Jessie's profit = $1.50 - $2.00
= -$0.50
If Jessie win: Jessie's profit = $1.50
Let's make a probability distribution table of Jessie's profit:
Profit $-0.50 $1.50
-----------------------------------------------------
P(x) [tex]\frac{5}{12}[/tex] [tex]\frac{7}{12}[/tex]
[tex]Expectation\ (\mu)=\sum p_ix_i[/tex]
[tex]=-0.50\times\frac{5}{12}+1.50\times\frac{7}{12}[/tex]
[tex]=\$ \frac{2}{3}[/tex]
[tex]Expectation\ for\ 40\ games=40\times\mu[/tex]
[tex]=40\times\frac{2}{3}[/tex]
[tex]=\$ 26 \frac{2}{3}[/tex]