Respuesta :

[tex]\mathbf f(x,y,z)=x^2yz\,\mathbf i+xy^2z\,\mathbf j+xyz^2\,\mathbf k[/tex]

[tex]\mathrm{div}\mathbf f(x,y,z)=\dfrac{\partial(x^2yz)}{\partial x}+\dfrac{\partial(xy^2z)}{\partial y}+\dfrac{\partial(xyz^2)}{\partial z}[/tex]
[tex]=2xyz+2xyz+2xyz[/tex]
[tex]=6xyz[/tex]

[tex]\mathrm{curl}\mathbf f(x,y,z)=\begin{vmatrix}\mathbf i&\mathbf j&\mathbf k\\\\\frac\partial{\partial x}&\frac\partial{\partial y}&\frac\partial{\partial z}\\\\x^2yz&xy^2z&xyz^2\end{vmatrix}[/tex]
[tex]=\left(\dfrac{\partial(xyz^2)}{\partial y}-\dfrac{\partial(xy^2z)}{\partial z}\right)\,\mathbf i-\left(\dfrac{\partial(xyz^2)}{\partial x}-\dfrac{\partial(x^2yz)}{\partial z}\right)\,\mathbf j+\left(\dfrac{\partial(xy^2z)}{\partial x}-\dfrac{\partial(x^2yz)}{\partial y}\right)\,\mathbf k[/tex]
[tex]=\left(xz^2-xy^2\right)\,\mathbf i-\left(yz^2-x^2y\right)\,\mathbf j+\left(y^2z-x^2z\right)\,\mathbf k[/tex]

The curl of [tex]\vec{\bf{F}}[/tex] and the divergence of [tex]\vec{\bf{F}}[/tex] are

[tex]curl \text{ }\vec{\bf{F}}=x(z^2-y^2)\bf{\hat{i}}+y(x^2-z^2)\bf{\hat{j}}+z(y^2-x^2)\bf{\hat{k}}[/tex]

[tex]div\text{ }\vec{\bf{F}}=6xyz[/tex]

Our vector field is given by

[tex]\vec{\bf{F}}(x,y,z)=x^2yz \text{ }\bf{\hat{i}}+xy^2z\text{ }\bf{\hat{j}}+xyz^2\text{ }\bf{\hat{k}}[/tex]

The curl of [tex]\vec{\bf{F}}[/tex] is given by the "determinant"

[tex]curl\text{ }\vec{\bf{F}}=\begin{vmatrix}\bf{ {\hat{i}}} & \bf{ {\hat{j}}} & \bf{ {\hat{k}}} \\\\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\\\ x^2yz & xy^2z & xyz^2\end{vmatrix}[/tex]

or

[tex]curl\text{ }\vec{\bf{F}}\\=[\frac{\partial}{\partial y} (xyz^2)-\frac{\partial}{\partial z} (xy^2z)]\bf{ {\hat{i}}} - [\frac{\partial}{\partial x} (xyz^2)-\frac{\partial}{\partial z} (x^2yz)]\bf{ {\hat{j}}} + [\frac{\partial}{\partial x} (xy^2z)-\frac{\partial}{\partial y} (x^2yz)]\bf{ {\hat{k}}}[/tex]

evaluating each partial derivative, we get

[tex]curl \text{ }\vec{\bf{F}}=(xz^2-xy^2)\bf{\hat{i}}-(yz^2-x^2y)\bf{\hat{j}}+(y^2z-x^2z)\bf{\hat{k}}\\=(xz^2-xy^2)\bf{\hat{i}}+(x^2y-yz^2)\bf{\hat{j}}+(y^2z-x^2z)\bf{\hat{k}}\\=x(z^2-y^2)\bf{\hat{i}}+y(x^2-z^2)\bf{\hat{j}}+z(y^2-x^2)\bf{\hat{k}}[/tex]

To find the divergence of [tex]\vec{\bf{F}}[/tex]

[tex]div\text{ }\vec{\bf{F}}=\frac{\partial}{\partial x} (x^2yz )+\frac{\partial}{\partial y}(xy^2z)+\frac{\partial}{\partial z}(xyz^2)\\\\=2xyz+2xyz+2xyz\\=6xyz[/tex]

Another solved example can be found here: https://brainly.com/question/12734135