Respuesta :
We can use the Sine Law:
a / sin A = b / sin B
16 / sin 22° = 25 / sin B
16 / 0.3746 = 25 / sin B
sin B = 25 · 0.3746 / 16
sin B = 0.5853
∠B = sin^(-1) 0.5853
∠B = 35.83° ≈ 35.8°
Answer: b. 35.8°
a / sin A = b / sin B
16 / sin 22° = 25 / sin B
16 / 0.3746 = 25 / sin B
sin B = 25 · 0.3746 / 16
sin B = 0.5853
∠B = sin^(-1) 0.5853
∠B = 35.83° ≈ 35.8°
Answer: b. 35.8°
Answer:
b.35.8°
Step-by-step explanation:
Given: We are given two sides and an angle.
a = 16, b = 25 and ∠A = 22°
We have to find the ∠B.
Here we can use sine formula and find the value of the ∠B
[tex]\frac{sin A}{a } = \frac{sin B}{b}[/tex]
Now plug in the given values, we get
[tex]\frac{sin 22}{16} = \frac{sin B}{25}[/tex]
Use calculator and find the value of sin 22 = 0.37
0.37/16 =sinB/25
cross multiplying, we get
0.37*25 = 16 sin B
9.25 = 16 sin B
sin B = 9.25/16
sin B = 0.58
B = [tex]sin^{-1} (0.58)[/tex]
B = 35.8°
So the answer is b. 35.8°