Respuesta :

m<M = 116
m<N = 111
m<P = 69
m<O = 64

(x = 18; y =4)
answer is A. first one

The angles are ∠M=116°, ∠O = 64°, ∠N=111° and ∠P=69°.

What is trapezoids?

"Trapezoids are quadrilaterals that have two parallel sides and two non-parallel sides. It is also called a Trapezium. Each pair of opposite angles in an isosceles trapezoid are supplementary, or add up to 180 degrees".

For the given situation,

The angles of trapezium are

∠M = 2 (17y-10)

∠N = 7x-15

∠O = 13y+12

∠P = 3x + 15

The opposite angles are supplementary,

∠M + ∠O = 180° and

∠N + ∠P = 180°.

∠[tex]M[/tex] + ∠[tex]O = 180[/tex]°

⇒[tex]13y+12+2(17y-10)[/tex] [tex]=180[/tex]

⇒[tex]13y+12+34y-20=180[/tex]

⇒[tex]47y = 188\\[/tex]

⇒[tex]y=4[/tex]

On substituting the value of y in ∠M and ∠O, we get

∠[tex]M = 116[/tex]°

∠O = [tex]64[/tex]°

Now consider,

∠[tex]N +[/tex] ∠[tex]P = 180[/tex]

⇒[tex]7x-15+3x+15=180[/tex]

⇒[tex]10x=180[/tex]

⇒[tex]x=18[/tex]

On substituting the value of x in ∠N and ∠P, we get

∠[tex]N=111\\[/tex]°

∠[tex]P=69[/tex]°

Hence we can conclude that the angles are ∠M=116°, ∠O = 64°, ∠N=111°

∠P=69°.

Learn more about trapezoid here

https://brainly.com/question/3623833

#SPJ2