Respuesta :
Create a table for given data:
[tex] \begin{array}{cccc}
& \text{Enjoed} & \text{Didn't enjoy} & \text{Total} \\
\text{Males} & 47 & 13 & 60 \\
\text{Females} & 53 & 3 & 56 \\
\text{Total} & 100 & 16 & 116
\end{array} [/tex]
Count relative frequencies:
[tex] n_{\text{males enjoyed}}=\dfrac{47}{116}\approx 0.41,\\ \\
n_{\text{males didn't enjoy}}=\dfrac{13}{116}\approx 0.11,\\ \\
n_{\text{females enjoyed}}=\dfrac{53}{116}\approx 0.46,\\ \\
n_{\text{females didn't enjoy}}=\dfrac{3}{116}\approx 0.03. [/tex].
The frequency table is:
[tex] \begin{array}{cccc}
& \text{Enjoed} & \text{Didn't enjoy} & \text{Total} \\
\text{Males} & 0.41 & 0.11 & 0.52 \\
\text{Females} & 0.46 & 0.03 & 0.49 \\
\text{Total} & 0.87 & 0.14 & \approx 1
\end{array} [/tex].
In the table it has that 46% of the females enjoyed the movie and 11% of males did not enjoy the movie, then a=0.41 (41%) and b=0.03 (3%).
Answer: correct choice is B: a=41%, b=3%.