Respuesta :

Solution is {0,3,3}

Explanation:

2cos2xcosx−1=0 can be written as

2cos2x−2cosx+cosx−1=0

or 2cosx(cosx−1)+1(cosx−1)=0

or (2cosx+1)(cosx−1)=0

∴ either 2cosx+1=0 i.e. cosx=−12 and in the interval [0,2π) x=3 or 3

or cosx−1= i.e. cosx=1 and in given interval x=0.

Even without the one written c is suppost to represent 1 in these