Respuesta :

1.

In any trapezoid, the length of the midsegment is [tex] \frac{|base_1|+|base_2|}{2} [/tex]

substituting the known values:

[tex] \frac{24+|base_2|}{2}=19 [/tex]

[tex]24+|base_2|=38[/tex]

[tex]|base_2|=38-24=14[/tex]

2.

Notice that since D and have the same y-coordinate, then DE is horizontal, and since F and D have the same x-coordinate, FD is vertical.

Thus FD and DE are perpendicular, so the triangle FED is a right triangle.

The median drawn from the right angle, is equal to half the hypotenuse.

That is, |DO|=1/2 |FE|, thus |OE|=|OF|=|OD|, are all radii of the circle centered at O.

O is the midpoint of EF, and is found by the Midpoint formula:

[tex]O=( \frac{1+7}{2} , \frac{5+1}{2} )=(4, 3)[/tex]


Answer:

1. 14

2. (4, 3)
Ver imagen eco92