Respuesta :
to find the inverse
1. replace f(c) with y
2. switch c and y
3. solve for y
4. replace y with f⁻¹(c)
so
f(c)=9/5c+32
y=9/5c+32
c=9/5y+32
minus 32 both sides
c-32=9/5y
times both sides by 5/9
[tex]\frac{5(c-32)}{9}=y[/tex]
[tex]y=\frac{5(c-32)}{9}[/tex]
[tex]f^{-1}(c)=\frac{5(c-32)}{9}[/tex]
1. replace f(c) with y
2. switch c and y
3. solve for y
4. replace y with f⁻¹(c)
so
f(c)=9/5c+32
y=9/5c+32
c=9/5y+32
minus 32 both sides
c-32=9/5y
times both sides by 5/9
[tex]\frac{5(c-32)}{9}=y[/tex]
[tex]y=\frac{5(c-32)}{9}[/tex]
[tex]f^{-1}(c)=\frac{5(c-32)}{9}[/tex]