Respuesta :
hello :
x : the lenghe y : the width
x-6 = 2y....(1)
xy=140....(2)
by (1) : x= 6+2y
subsct in (2) : (6+2y)y =140
2y² +6y -140 =0
y² +3y -70 = 0
delta : b²-4ac a=1 b=3 c= -70
3²-4(1)(-70) = 289=17²
y1 = (-3-17)/2 negatif... refused
y2 = (-3+17)/2 = 7
x= 6+2(7) = 20
x : the lenghe y : the width
x-6 = 2y....(1)
xy=140....(2)
by (1) : x= 6+2y
subsct in (2) : (6+2y)y =140
2y² +6y -140 =0
y² +3y -70 = 0
delta : b²-4ac a=1 b=3 c= -70
3²-4(1)(-70) = 289=17²
y1 = (-3-17)/2 negatif... refused
y2 = (-3+17)/2 = 7
x= 6+2(7) = 20
Dimensions of the rectangle is length l=14 meter and width w= 10 meter
What is Rectangle?
A rectangle is a quadrilateral with four right angles.
What is area?
Area is the quantity that expresses the extent of a region on the plane or on a curved surface
Given,
The length of a rectangle is 6 meter less than twice its width
Consider,
Length = l
width = w
Then,
l = 2w - 6
Area of the rectangle = 140 meter square
Area of the rectangle = Length × Width
140 = l×w
Substitute the value of l in the equation of area
140 = (2w-6)×w
[tex]2w^{2}-6w=140\\ 2w^{2}-6w-140=0\\w^{2} -3w-70=0\\(w-10)(w+7))=0[/tex]
Therefore width w = 10 and -7
Width cannot become negative
Therefore width w = 10 meter
Substitute the value of w in the equation of area
140= l × 10
l=[tex]\frac{140}{10}=14[/tex]
Length l= 14 meter
Hence, the dimensions of the rectangle is l=14 meter and w=10 meter
Learn more about rectangle and area here
https://brainly.com/question/20693059
#SPJ2