Respuesta :
[tex]\bf \qquad \qquad \textit{ratio relations}
\\\\
\begin{array}{ccccllll}
&Sides&Area&Volume\\
&-----&-----&-----\\
\cfrac{\textit{similar shape}}{\textit{similar shape}}&\cfrac{s}{s}&\cfrac{s^2}{s^2}&\cfrac{s^3}{s^3}
\end{array} \\\\
-----------------------------\\\\
\cfrac{\textit{similar shape}}{\textit{similar shape}}\qquad \cfrac{s}{s}=\cfrac{\sqrt{s^2}}{\sqrt{s^2}}=\cfrac{\sqrt[3]{s^3}}{\sqrt[3]{s^3}}\\\\
-------------------------------\\\\[/tex]
[tex]\bf \cfrac{\triangle ABC}{\triangle DE F}\qquad \cfrac{longest\ side}{longest\ side}\quad \cfrac{1}{10}=\cfrac{40}{s}\implies s=\cfrac{10\cdot 40}{1}\\\\ -------------------------------\\\\ \cfrac{\triangle ABC}{\triangle DE F}\qquad \cfrac{s}{s}=\cfrac{\sqrt{s^2}}{\sqrt{s^2}}\implies \cfrac{1}{10}=\cfrac{\sqrt{A_1}}{\sqrt{A_2}}\implies \cfrac{1}{10}=\sqrt{\cfrac{A_1}{A_2}} \\\\\\ \left( \cfrac{1}{10} \right)^2=\cfrac{A_1}{A_2}\cfrac{1^2}{10^2}=\cfrac{A_1}{A_2}\implies \cfrac{1}{100}=\cfrac{A_1}{A_2}[/tex]
[tex]\bf \cfrac{\triangle ABC}{\triangle DE F}\qquad \cfrac{longest\ side}{longest\ side}\quad \cfrac{1}{10}=\cfrac{40}{s}\implies s=\cfrac{10\cdot 40}{1}\\\\ -------------------------------\\\\ \cfrac{\triangle ABC}{\triangle DE F}\qquad \cfrac{s}{s}=\cfrac{\sqrt{s^2}}{\sqrt{s^2}}\implies \cfrac{1}{10}=\cfrac{\sqrt{A_1}}{\sqrt{A_2}}\implies \cfrac{1}{10}=\sqrt{\cfrac{A_1}{A_2}} \\\\\\ \left( \cfrac{1}{10} \right)^2=\cfrac{A_1}{A_2}\cfrac{1^2}{10^2}=\cfrac{A_1}{A_2}\implies \cfrac{1}{100}=\cfrac{A_1}{A_2}[/tex]
Answer:
The length of the longest side of ∆ABC is 4 units.
The ratio of the area of ∆ABC to the area of ∆DEF is 1 : 100
Step-by-step explanation:
The ratio of the perimeter of ∆ABC to the perimeter of ∆DEF is 1 : 10
As perimeter is one dimensional measurement, that means ∆DEF is scaled from ∆ABC with a scale factor of 10.
Suppose, the length of longest side of ∆ABC is [tex]x[/tex] unit.
So, the length of longest side of ∆DEF [tex]= 10x[/tex]
Given that, the longest side of ∆DEF measures 40 units. So....
[tex]10x= 40\\ \\ x=\frac{40}{10}=4[/tex]
So, the length of longest side of ∆ABC is 4 units.
Now, Area is a two dimensional measurement.
So, the ratio of the area of ∆ABC to the area of ∆DEF will be: [tex](\frac{1}{10})^2 = \frac{1}{100}= 1:100[/tex]