Respuesta :

Answer: z = 1

Step-by-step explanation:

        We will solve the given equation for z.

Given:

   [tex]\displaystyle log_{10}z+log_{10}(z+9)=1[/tex]

Add the logarithms together:

➜ [tex]loga + logb=log(ab)[/tex]

   [tex]\displaystyle log_{10}(z*(z+9))=1[/tex]

Multiply:

   [tex]\displaystyle log_{10}(z^{2} +9z)=1[/tex]

Exponential form:

   [tex]10^1=z^2+9z[/tex]

To the power of 1:

   [tex]10=z^2+9z[/tex]

Subtract 10 from both sides of the equation:

   [tex]0=z^2+9z-10[/tex]

Factor:

➜ -1 and 10 add to 9 and multiply to -10.

   [tex]0=(z-1)(z+10)[/tex]

Zero product property and separate the cases:

   0 = z - 1          0 = z + 10

   z = 1                z = -10

        You cannot take the logarithm of a negative number (-10+9=-1), so our answer is 1.