an observer on a cliff 1000dm above sea level sights 2 ships due east. the angles of depression of the ships are 47 degrees and 32 degrees. find the distance between the ships

Respuesta :

lkgal

Answer:

804.35+915.26=1719.61

dm

804.35+915.26=1719.61dm.

Step-by-step explanation:

I'll guide you through the solution:

1. **Define Variables:**

  Let \( d \) be the distance between the two ships.

2. **Set up Equations:**

  \[

  \begin{align*}

  \tan(47^\circ) &= \frac{1000}{\frac{d}{2}} \\

  \tan(32^\circ) &= \frac{1000}{\frac{d}{2}}

  \end{align*}

  \]

3. **Solve for \( d \):**

  \[

  \begin{align*}

  \frac{1000}{\tan(47^\circ)} &= \frac{d}{2} \\

  \frac{1000}{\tan(32^\circ)} &= \frac{d}{2}

  \end{align*}

  \]

4. **Find \( d \):**

  Solve for \( d \) in both equations. I'll provide the numerical values:

  \[

  \begin{align*}

  \frac{1000}{\tan(47^\circ)} &\approx 804.35 \, \text{dm} \\

  \frac{1000}{\tan(32^\circ)} &\approx 915.26 \, \text{dm}

  \end{align*}

  \]

5. **Final Answer:**

  The distance between the two ships is approximately \(804.35 + 915.26 = 1719.61 \, \text{dm}\).