The band gap for a pure semiconductor is 2.1 eV. The maximum wavelength of photon which is able to create electron hole pair is nearly:
a. 600nm
b. 590 nm
c. 400 nm
d. 200 nm

Respuesta :

Answer:

  • 590 nm.

Explanation:

We are given,

The band gap for a pure semiconductor is 2.1 eV. = [tex]\sf 3.365 \times 10^ {-19} \sf \ nm [/tex]

To calculate The maximum wavelength of photon which is able to create electron hole pair, we can use the formula,

[tex] \sf E_g = \dfrac{hc}{\lambda}[/tex]

where,

  • [tex] \sf E_g [/tex]is band gap for a pure semiconductor. [tex] \sf(3.365 \times 10^ {-19} J [/tex]
  • h is planck's constant [tex] \sf(6.62 \times 10^{-34} \sf \ m^2kg/s)[/tex]
  • c is speed of light in vaccum [tex]\sf (3 \times 10^8 \sf \ m/s) [/tex]
  • [tex]\sf \lambda [/tex] is wavelength

substitute the required values in the above formula,

[tex]\sf \lambda = \dfrac{ 6.62 \times 10^{-34} \times 3 \times 10^8 }{3.365\times 10^ {-19} } [/tex]

[tex]\sf \lambda = \dfrac{19.86 \times 10^{-26}}{3.365\times 10^ {-19} J } [/tex]

[tex] \sf \lambda = 5.90 \times 10^{-26} \times 10^{19} [/tex]

[tex] \sf \lambda = 5.90 \times 10^{7}[/tex]

[tex] \sf \lambda = 590 \ \sf nm[/tex]

Therefore, the maximum wavelength of photon which is able to create electron hole pair is nearly is 590 nm.