Respuesta :

735024

Answer:U = {1, 2, ..., 20}

A = {1, 3, 5, 7, 9}

B = {1, 2, 3, ..., 10}

De Morgan's laws state:

The complement of the union of two sets is equal to the intersection of their individual complements.

The complement of the intersection of two sets is equal to the union of their individual complements.

Step-by-step explanation:

Answer:

[tex]\text{Solution:}\\\text{U = \{1,2,...,20\}}\\\text{A = \{1,3,5,7,9\}}\\\text{B = \{1,2,3,...,20\}}\\\therefore\ \text{A}'=\text{U}-\text{A}=\{1,2,...,20\}-\{1,3,5,7,9\}=\{2,4,6,8,10,11,12,...,20\}\\\therefore\ \text{B}'=\text{U}-\text{B}=\{1,2,3,...,20\}-\{1,2,3,...,10\}=\{11,12,13,...,20\}[/tex][tex]\text{Now,}\\\text{According to Demorgan's law,}\\\text{1. A}'\cup\text{B}'=(\text{A}\cap\text{B})'\\\text{2. A}'\cap\text{B}'=(\text{A}\cup\text{B})'[/tex]

[tex]\text{Now we will prove them one by one.}\\\text{1. L.H.S. = A}'\cup\text{B}'=\{2,4,6,8,10,11,12,...,20\}\cup\{11,12,13,...,20\}\\\text{}\ \ \ \ \ \ \ \ \ \ \ \ =\{2,4,6,8,11,12,...,20\}\\\text{}\ \ \ \text{R.H.S. = }(\text{A}\cap\text{B})'=\{1,3,5,7,9\}=\text{U}-(\text{A}\cap\text{B})=\{2,4,6,8,10,11,...,20\}\\\therefore\ \text{A}'\cup\text{B}'=(\text{A}\cap\text{B})'[/tex]

[tex]\text{2. L.H.S. = A}'\cap\text{B}'=\{2,4,6,8,10,11,12,...,20\}\cap\{11,12,13,...,20\}\\\text{}\ \ \ \ \ \ \ \ \ \ \ \ =\{11,12,...,20\}\\\text{}\ \ \ \text{R.H.S. = }(\text{A}\cup\text{B})'=\{1,2,...,10\}=\text{U}-(\text{A}\cup\text{B})=\{11,12,...,20\}\\\therefore\ \text{A}'\cap\text{B}'=(\text{A}\cup\text{B})'[/tex]

Ver imagen dashataran