Answer:
k = 20.0
j = 11.2
l = 22.4
Explanation:
[tex]\sf geometric \ mean : \dfrac{short \ leg}{long \ leg} = \dfrac{short \ leg}{long \ leg}[/tex]
Applying the above equation, Find K:
[tex]\rightarrow \sf \dfrac{5}{10}=\dfrac{10}{k}[/tex]
[tex]\rightarrow \sf 5k = 100[/tex]
[tex]\rightarrow \sf k = 20.0 \ (nearest \ tenth)[/tex]
Find J:
[tex]\sf 5^2 + 10^2 = j^2[/tex]
[tex]\sf 125 = j^2[/tex]
[tex]\sf \sqrt{ 125 }= j[/tex]
[tex]\sf j = 5\sqrt{5} = 11.18 = 11.2 \ (nearest \ tenth)[/tex]
Find L:
[tex]\sf 20^2 + 10^2 = l^2[/tex]
[tex]\sf 500 = l^2[/tex]
[tex]\sf \sqrt{500 }= l[/tex]
[tex]\sf l = 10\sqrt{5} = 22.36 = 22.4 \ (nearest \ tenth)[/tex]