Respuesta :

Answer:

$19,287.13

Step-by-step explanation:

To find the amount in a continuously compounded account after 30 years, we can use the continuous compounding interest formula:

[tex]\boxed{\begin{array}{l}\underline{\textsf{Continuous Compounding Interest Formula}}\\\\A=Pe^{rt}\\\\\textsf{where:}\\\phantom{ww}\bullet\;\;\textsf{$A$ is the final amount.}\\\phantom{ww}\bullet\;\;\textsf{$P$ is the principal amount.}\\\phantom{ww}\bullet\;\;\textsf{$e$ is Euler's number (constant).}\\\phantom{ww}\bullet\;\;\textsf{$r$ is the interest rate (in decimal form).}\\\phantom{ww}\bullet\;\;\textsf{$t$ is the time (in years).}\end{array}}[/tex]

In this case:

  • P = $5000
  • r = 4.5% = 0.045
  • t = 30 years

Substitute the values into the formula and solve for A:

[tex]A=5000\cdot e^{0.045 \cdot 30}[/tex]

[tex]A=5000\cdot e^{1.35}[/tex]

[tex]A=5000\cdot 3.85742553...[/tex]

[tex]A=19287.12765348...[/tex]

[tex]A=19287.13[/tex]

Therefore,  the amount in the continuously compounded account after 30 years would be $19,287.13.

Ver imagen semsee45