contestada

Two planets are relatively close so they are attracted to each other with a non-negligible gravitational force. If planet A has a mass of 3.67 x 1020 kg, what is the mass of planet B given their center of masses are 2.23 x 1024 m apart and the force of gravity pulling them together is 5.95 x 106 N?

Respuesta :

Answer:

We can use Newton's law of universal gravitation to solve this problem:

\[ F = \frac{{G \cdot m_1 \cdot m_2}}{{r^2}} \]

Where:

- \( F \) is the force of gravity (given as \( 5.95 \times 10^6 \) N)

- \( G \) is the gravitational constant (\( 6.674 \times 10^{-11} \, \text{m}^3/\text{kg}\cdot\text{s}^2 \))

- \( m_1 \) is the mass of planet A (\( 3.67 \times 10^{20} \) kg)

- \( m_2 \) is the mass of planet B (which we want to find)

- \( r \) is the distance between the centers of the planets (\( 2.23 \times 10^{24} \) m)

We can rearrange the formula to solve for \( m_2 \):

\[ m_2 = \frac{{F \cdot r^2}}{{G \cdot m_1}} \]

Substitute the given values:

\[ m_2 = \frac{{5.95 \times 10^6 \cdot (2.23 \times 10^{24})^2}}{{6.674 \times 10^{-11} \cdot 3.67 \times 10^{20}}} \]

Now, calculate \( m_2 \).

\[ m_2 = \frac{{5.95 \times 10^6 \cdot (2.23 \times 10^{24})^2}}{{6.674 \times 10^{-11} \cdot 3.67 \times 10^{20}}} \]

\[ m_2 = \frac{{5.95 \times 10^6 \cdot 4.9729 \times 10^{48}}}{{6.674 \times 10^{-11} \cdot 3.67 \times 10^{20}}} \]

\[ m_2 = \frac{{29.6525 \times 10^{54}}}{{24.4574 \times 10^{9}}} \]

\[ m_2 = \frac{{29.6525}}{{24.4574}} \times 10^{54-9} \]

\[ m_2 \approx 1.211 \times 10^{45} \, \text{kg} \]

So, the mass of planet B is approximately \( 1.211 \times 10^{45} \) kg.