contestada

If f, of, 1, equals, 4f(1)=4 and f, of, n, plus, 1, equals, f, of, n, squared, plus, 2f(n+1)=f(n) 2 +2 then find the value of f, of, 4f(4)

Respuesta :

Answer:

f(4) = 106278

Step-by-step explanation:

Given:

f(1) = 4

f(n+1) = (f(n))² + 2

To find f(4), we just need to find f(2), then f(3), then we can finally get f(4)

f(2) = f(1+1)

     = (f(1))² + 2

     = 4² + 2

     = 18

f(3) = f(2+1)

     = (f(2))² + 2

     = 18² + 2

     = 326

f(4) = f(3+1)

     = (f(3))² + 2

     = 326² + 2

     = 106278