Imdumyy
contestada

2. Using your Trig. Sum and Difference formulas, verify the following: sin (30° + Ø) + cos(60° + Ø) = cosØ

2 Using your Trig Sum and Difference formulas verify the following sin 30 Ø cos60 Ø cosØ class=

Respuesta :

msm555

Answer:

See below:

Step-by-step explanation:

Let's use the trigonometric sum and difference formulas to verify the given expression:

[tex] \sin(30^\circ + \theta) + \cos(60^\circ + \theta) = \cos(\theta) [/tex]

We'll use the following trigonometric sum and difference formulas:

  • [tex]\sin(A + B) = \sin A \cos B + \cos A \sin B[/tex]
  • [tex]\cos(A + B) = \cos A \cos B - \sin A \sin B[/tex]

Now, substitute the given values into the expression:

Left hand side:

[tex] \sin(30^\circ + \theta) + \cos(60^\circ + \theta) [/tex]

Using the sum formula for sine and cosine.

[tex]= \left(\sin 30^\circ \cos \theta + \cos 30^\circ \sin \theta\right) + \left(\cos 60^\circ \cos \theta - \sin 60^\circ \sin \theta\right) [/tex]

Now, simplify each term:

[tex]= \left(\dfrac{1}{2} \cos \theta + \dfrac{\sqrt{3}}{2} \sin \theta\right) + \left(\dfrac{1}{2} \cos \theta - \dfrac{\sqrt{3}}{2} \sin \theta\right) [/tex]

Combine like terms:

[tex] = \dfrac{1}{2} \cos \theta + \dfrac{1}{2} \cos \theta [/tex]

[tex] = \cos \theta [/tex]

Right Hand side:

Therefore, the expression is equal to [tex]\cos \theta[/tex], verifying the given trigonometric identity.