Respuesta :
Answer:
130 kW
Explanation:
Power = work / time
Work = force × distance
Speed = distance / time
Therefore:
P = W / t
P = Fd / t
P = Fv
Plugging in values:
P = (1440 kg) (9.8 m/s²) (9.2 m/s)
P = 130,000 Watts
P = 130 kW
Answer:
[tex] 126224 \textsf{ watt }[/tex]
Explanation:
The average power ([tex]P[/tex]) can be calculated using the formula:
[tex] P = \dfrac{W}{\Delta t} [/tex]
where
- [tex]W[/tex] is the work done and
- [tex]\Delta t[/tex] is the time taken.
The work done ([tex]W[/tex]) can be calculated using the formula:
[tex] W = mgh [/tex]
where
- [tex]m[/tex] is the mass,
- [tex]g[/tex] is the acceleration due to gravity, and
- [tex]h[/tex] is the vertical height.
First, calculate the work done:
[tex] W = (1400 \, \textsf{kg})(9.8 \, \textsf{m/s}^2)(65 \, \textsf{m}) [/tex]
[tex] W = 1400 \times 9.8 \times 65 \, \textsf{Joules} [/tex]
Now, calculate the time taken ([tex]\Delta t[/tex]) using the formula:
[tex] \Delta t = \dfrac{\Delta h}{v} [/tex]
where
- [tex]\Delta h[/tex] is the vertical height and
- [tex]v[/tex] is the average speed.
[tex] \Delta t = \dfrac{65 \, \textsf{m}}{9.2 \, \textsf{m/s}} [/tex]
Now, substitute these values into the power formula:
[tex] P = \dfrac{1400 \times 9.8 \times 65}{\dfrac{65}{9.2}} [/tex]
[tex] P = \dfrac{1400 \times 9.8 \times 9.2}{1} [/tex]
[tex] P = 126224 \textsf{ watt }[/tex]
So, the average power is:[tex] 126224 \textsf{ watt }[/tex]