Respuesta :
Answer:
a) [tex]E(p) = -4,800p + 440,000[/tex]
b) [tex] R(p) = -120p^2 + 8,000p [/tex]
c) $ 48,000
d) [tex]p = 0[/tex] and [tex]p =66.66[/tex]
e) $40
Step-by-step explanation:
a. Expense Function (E):
The expense function includes both the variable cost (cost to manufacture each item) and the fixed cost. The variable cost is the product of the cost to manufacture each item ($40) and the quantity ([tex]q[/tex]).
[tex] E(p) = 40q + 120,000 [/tex]
Now, we need to substitute the demand function [tex]q = -120p + 8,000[/tex] into the expense function:
[tex] E(p) = 40(-120p + 8,000) + 120,000 [/tex]
[tex] E(p) = -4,800p + 320,000 + 120,000 [/tex]
[tex] E(p) = -4,800p + 440,000 [/tex]
So, the expense function in terms of [tex]p[/tex] is:
[tex]\Large\boxed{\boxed{E(p) = -4,800p + 440,000}}[/tex]
[tex]\dotfill[/tex]
b. Revenue Equation (R):
The revenue is the product of the quantity sold ([tex]q[/tex]) and the price ([tex]p[/tex]).
[tex] R(p) = pq [/tex]
Substitute the demand function into the revenue equation:
[tex] R(p) = p(-120p + 8,000) [/tex]
[tex] R(p) = -120p^2 + 8,000p [/tex]
So, the revenue equation for this mobile tech product is:
[tex] \Large\boxed{\boxed{R(p) = -120p^2 + 8,000p}} [/tex]
[tex]\dotfill[/tex]
c. Revenue at $60 price:
Substitute [tex]p = 60[/tex] into the revenue equation:
[tex] R(60) = -120(60)^2 + 8,000(60) [/tex]
Calculate [tex]R(60)[/tex] to find the revenue at a price of $60.
Let's calculate [tex] R(60) [/tex]:
[tex]\begin{aligned} R(60) & = -120(60)^2 + 8,000(60) \\\\ & = -120(3600) + 480,000 \\\\ & = -432,000 + 480,000 \\\\ & = 48,000\\\\ & = 48,000 \end{aligned}[/tex].
The revenue if the price of the item is set at $60 is:
[tex]\Large\boxed{\boxed{\$ 48,000}}[/tex]
[tex]\dotfill[/tex]
d. Roots of the Revenue Equation:
The revenue equation is a quadratic equation, and its roots can be found by setting [tex]R(p) = 0[/tex]:
[tex] -120p^2 + 8,000p = 0 [/tex]
Factor out [tex]p[/tex]:
[tex] -120p( p - \dfrac{8,000}{120}) = 0 [/tex]
This equation has two solutions,
Either
[tex] -120 p = 0 [/tex]
[tex] p =\dfrac{0}{-120} [/tex]
[tex] p = 0[/tex]
Or
[tex] p - \dfrac{8,000}{120} = 0[/tex]
[tex] p = \dfrac{8,000}{120} [/tex]
[tex] p \approx 66.66 [/tex]
This equation has roots at:
[tex]\large\boxed{\boxed{ \sf p = 0 \textsf{ and } p =66.66 }}[/tex]
[tex]\dotfill[/tex]
e. Higher Revenue at $20 or $40:
let's compare the revenue at [tex]p = 20[/tex] and [tex]p = 40[/tex]:
[tex]\begin{aligned}R(20) &= -120(20)^2 + 8,000(20) \\\\&= -120(400) + 160,000 \\ \\ &= -48,000 + 160,000 \\\\ &= 112,000 \end{aligned}[/tex]
[tex]\begin{aligned} R(40) &= -120(40)^2 + 8,000(40) \\\\ &= -120(1600) + 320,000 \\\\ &= -192,000 + 320,000 \\\\ &= 128,000 \end{aligned}[/tex]
Therefore, the price of $40 yields higher revenue compared to $20.