1A function g is defined by g(x)=x+2. (a) Express g^-1 in similar form. (b) Hence evaluate (i) g^-1(5) (ii)g^-1(-5)

Respuesta :

Answer:

Please check your answer for your question

Step-by-step explanation:

To find the inverse of the function \( g(x) = x + 2 \), denoted as \( g^{-1} \), we follow these steps:

(a) Express \( g^{-1} \) in a similar form.

1. Start with the original function \( g(x) \):

  \[ g(x) = x + 2 \]

2. Replace \( g(x) \) with \( y \) (or \( f(x) \)):

  \[ y = x + 2 \]

3. Swap \( x \) and \( y \) to solve for \( y \) in terms of \( x \):

  \[ x = y + 2 \]

4. Solve this equation for \( y \):

  \[ y = x - 2 \]

So, the inverse function \( g^{-1}(x) \) is:

  \[ g^{-1}(x) = x - 2 \]

(b) Now, let's evaluate \( g^{-1}(5) \) and \( g^{-1}(-5) \) using the inverse function we found.

(i) For \( g^{-1}(5) \):

  \[ g^{-1}(5) = 5 - 2 = 3 \]

(ii) For \( g^{-1}(-5) \):

  \[ g^{-1}(-5) = (-5) - 2 = -7 \]

So, the evaluations are:

(i) \( g^{-1}(5) = 3 \)

(ii) \( g^{-1}(-5) = -7 \)