1) A function h is given as h(x)=(2/3)x +6. A) express h^-1 in similar form. B) hence evaluate i) h^-1(12) ii)h^-1(-4). 3.A function f is defined by f(x) =(x+1)/(x-2). A) state the value of x for which f is not defined. B)i. Express f^-1 in similar form. ii)state the value of x for which f^-1 is not defined. C) evaluate f^-1(7).

Respuesta :

Let's address each part of the question:

1. **Function \( h \):**

  Given: \( h(x) = \frac{2}{3}x + 6 \)

  A) To find \( h^{-1} \), first, we need to solve for \( x \) in terms of \( y \):

  \[ y = \frac{2}{3}x + 6 \]

  \[ y - 6 = \frac{2}{3}x \]

  \[ x = \frac{3}{2}(y - 6) \]

  So, the inverse function \( h^{-1}(y) \) is:

  \[ h^{-1}(y) = \frac{3}{2}y - 9 \]

  B)

  i) To evaluate \( h^{-1}(12) \):

  \[ h^{-1}(12) = \frac{3}{2} \times 12 - 9 = 18 - 9 = 9 \]

  ii) To evaluate \( h^{-1}(-4) \):

  \[ h^{-1}(-4) = \frac{3}{2} \times (-4) - 9 = -6 - 9 = -15 \]

2. **Function \( f \):**

  Given: \( f(x) = \frac{x+1}{x-2} \)

  A) The function \( f(x) \) is not defined when the denominator \( x - 2 \) equals zero. So, \( f(x) \) is not defined when \( x = 2 \).

  B) To find \( f^{-1} \), we need to solve for \( x \) in terms of \( y \):

  \[ y = \frac{x+1}{x-2} \]

  \[ y(x-2) = x + 1 \]

  \[ xy - 2y = x + 1 \]

  \[ xy - x = 2y + 1 \]

  \[ x(y - 1) = 2y + 1 \]

  \[ x = \frac{2y + 1}{y - 1} \]

  So, the inverse function \( f^{-1}(y) \) is:

  \[ f^{-1}(y) = \frac{2y + 1}{y - 1} \]

  ii) \( f^{-1} \) is not defined when \( y - 1 = 0 \), which means \( y = 1 \). Substituting \( y = 1 \) into \( f^{-1}(y) \) gives \( x = \frac{2(1) + 1}{1 - 1} = \frac{3}{0} \), which is undefined.

  C) To evaluate \( f^{-1}(7) \):

  \[ f^{-1}(7) = \frac{2(7) + 1}{7 - 1} = \frac{15}{6} = 2.5 \]

So, in summary:

- \( h^{-1}(y) = \frac{3}{2}y - 9 \)

- \( h^{-1}(12) = 9 \)

- \( h^{-1}(-4) = -15 \)

- \( f^{-1}(y) = \frac{2y + 1}{y - 1} \) (except when \( y = 1 \))

- \( f^{-1}(7) = 2.5 \)