Respuesta :

kayv22
To expand the expression (-2x + 7)(-2x + 7), we can use the FOIL method. FOIL stands for First, Outer, Inner, Last. Let's break it down step by step:

First: Multiply the first terms of each binomial: (-2x) * (-2x) = 4x^2
Outer: Multiply the outer terms of each binomial: (-2x) * 7 = -14x
Inner: Multiply the inner terms of each binomial: 7 * (-2x) = -14x
Last: Multiply the last terms of each binomial: 7 * 7 = 49

Now, let's combine the results:
4x^2 - 14x - 14x + 49

Simplifying further:
4x^2 - 28x + 49

So, the expanded form of (-2x + 7)(-2x + 7) is 4x^2 - 28x + 49.

Answer:

[tex]4x^{2} -28x+49[/tex]

Step-by-step explanation:

Here, you can either use the FOIL method, or just solve the square.

FOIL Method:

(-2x+7)(-2x+7) = (-2x)(-2x) + (-2x)(7) + (7)(-2x) + (7)(7) = [tex]4x^{2} -14x-14x+49[/tex]

Now simplify to a4x^{2} -14x+-14x+49rrive at your final answer:

[tex]4x^{2} -14x+-14x+49\\=4x^{2} -28x+49[/tex]

Solving the Square:

Because we are multiply (-2x+7) by itself, rewrite the expression (-2x+7)(-2x+7) into [tex](-2x+7)^{2}[/tex]

Now, follow the form to open simplify: [tex](a+b)^{2} = a^{2} +2ab+b^{2}[/tex]

Substitute a with -2x and b with 7 to reach your final answer:

[tex](a+b)^{2} = a^{2} +2ab+b^{2}\\(-2x+7)^{2} =(-2x)^{2} +2(-2x)(7)+(7)^{2} \\= 4x^{2} -28x+49[/tex]