Respuesta :

Answer :

  • v = 20√5/3 π cm^3 or 14.91 π cm^3

Explanation :

surface area of a sphere is given by,

  • sa = 4πr^2

where,r = radius

atq,

  • sa = 20π cm^2

plugging in ,

  • 4πr^2 = 20π cm^2
  • r^2 = 20π/4π cm^2
  • r^2 = 5 cm^2
  • r = √5 cm

thus, the radius of the sphere is √5 cm

the volume of a sphere is given by,

  • v = 4/3πr^3
  • v = 4/3π(√5 cm)^3
  • v = 20√5/3 π cm^3 or 14.91 π cm^3 .

Answer:

[tex]\dfrac{20\sqrt{5}}{3} \pi\; \sf cm^3[/tex]

Step-by-step explanation:

To find the volume of a sphere given its surface area is 20π cm², we can substitute the surface area into the surface area formula to find the radius, then substitute the radius into the volume formula.

The formula for the surface area of a sphere is:

[tex]\boxed{\begin{array}{l}\underline{\textsf{Surface Area of a Sphere}}\\\\SA=4\pi r^2\\\\\textsf{where:}\\ \phantom{ww}\bullet\;\textsf{$SA$ is the surface area.}\\\phantom{ww}\bullet\;\textsf{$r$ is the radius.}\end{array}}[/tex]

Substitute SA = 20π and solve for r:

[tex]4\pi r^2=20\pi\\\\4r^2=20\\\\r^2=5\\\\r=\sqrt{5}[/tex]

Therefore, the radius of the sphere is √5 cm.

The formula for the volume of a sphere is:

[tex]\boxed{\begin{array}{l}\underline{\textsf{Volume of a Sphere}}\\\\V=\dfrac{4}{3}\pi r^3\\\\\textsf{where:}\\ \phantom{ww}\bullet\;\textsf{$V$ is the volume.}\\\phantom{ww}\bullet\;\textsf{$r$ is the radius.}\end{array}}[/tex]

Substitute r = √5 into the volume formula:

[tex]V=\dfrac{4}{3} \pi \left(\sqrt{5}\right)^3\\\\\\\\V=\dfrac{4}{3} \pi \cdot 5\sqrt{5}\\\\\\\\V=\dfrac{4\cdot 5\sqrt{5}}{3} \pi\\\\\\\\V=\dfrac{20\sqrt{5}}{3} \pi\; \sf cm^3[/tex]

Therefore, the volume of the sphere with a surface area of 20π cm² is:

[tex]\Large\boxed{\boxed{\textsf{Volume}=\dfrac{20\sqrt{5}}{3} \pi\; \sf cm^3}}[/tex]