Respuesta :
Answer with step-by-step explanation:
To find the values of s for different values of t in the given equation s = 7 ( t + 1 ), you can substitute the values of t into the equation.
1. When t = 7 :
s = 7 ( 7 + 1 ) = 7 ( 8 ) = 56
2. When t=8:
s = 7 ( -8 + 1 ) = 7( -7 ) = -49
3. When t = 0:
s = 7 ( 0 + 1 ) = 7 ( 1 ) = 7
Answer:
a) [tex]s=56[/tex]
b) [tex]s=-49[/tex]
c) [tex]s=7[/tex]
Step-by-step explanation:
To solve this equation we need to substitute the given value into [tex]s[/tex]. We need to remember BEDMAS (order of operations) in order to properly solve it.
To solve a:
[tex]s = 7(t+1)[/tex]
[tex]s=7(7+1)[/tex]
[tex]s=7(8)\\[/tex]
[tex]s=56[/tex]
To solve b:
[tex]s=7(t+1)[/tex]
[tex]s=7(-8+1)[/tex]
[tex]s=7(-7)[/tex]
[tex]s=-49[/tex]
To solve for c:
[tex]s=7(t+1)[/tex]
[tex]s=7(0+1)[/tex]
[tex]s=7(1)\\[/tex]
[tex]s=7[/tex]
∴ The value of [tex]s[/tex] would be 42, -49, and 7 respectively.