Respuesta :

Hi1315

Answer with step-by-step explanation:

To find the values of s for different values of t in the given equation s = 7 ( t + 1 ), you can substitute the values of t into the equation.

1. When t = 7 :

  s = 7 ( 7 + 1 ) = 7 ( 8 ) = 56

2. When t=8:

 s = 7 ( -8 + 1 ) = 7( -7 ) = -49

3. When t = 0:

 s = 7 ( 0 + 1 ) = 7 ( 1 ) = 7

Answer:

a) [tex]s=56[/tex]

b) [tex]s=-49[/tex]

c) [tex]s=7[/tex]

Step-by-step explanation:

To solve this equation we need to substitute the given value into [tex]s[/tex]. We need to remember BEDMAS (order of operations) in order to properly solve it.

To solve a:

[tex]s = 7(t+1)[/tex]

[tex]s=7(7+1)[/tex]

[tex]s=7(8)\\[/tex]

[tex]s=56[/tex]

To solve b:

[tex]s=7(t+1)[/tex]

[tex]s=7(-8+1)[/tex]

[tex]s=7(-7)[/tex]

[tex]s=-49[/tex]

To solve for c:

[tex]s=7(t+1)[/tex]

[tex]s=7(0+1)[/tex]

[tex]s=7(1)\\[/tex]

[tex]s=7[/tex]

∴ The value of [tex]s[/tex] would be 42, -49, and 7 respectively.