1. Completa la tabla. Expresión algebraica y = ax² + bx + c
y=3x²+2x-8
y= 4x²+6x+4
y=x²+6x+8
y=-x²-2x-48
y=2x²-10x+9
Ecuación cuadrática (y = 0) ax²+ bx + c = 0 Discriminante D= b²-4ac Soluciones de la ecuación Intersecciones con el eje x​

1 Completa la tabla Expresión algebraica y ax bx c y3x2x8 y 4x6x4 yx6x8 yx2x48 y2x10x9 Ecuación cuadrática y 0 ax bx c 0 Discriminante D b4ac Soluciones de la e class=

Respuesta :

Answer:

Step-by-step explanation:

1. **Completing the Table**:

| Expresión Algebraica | Ecuación Cuadrática (y=0) | Discriminante (D) | Soluciones de la Ecuación | Intersecciones con el eje x |

|----------------------|--------------------------|--------------------|--------------------------|-----------------------------|

| y = 3x² + 2x - 8 | 3x² + 2x - 8 = 0 | \( D = 2^2 - 4*3*(-8) = 100 \) | \( x = \frac{-2 \pm \sqrt{100}}{6} = \frac{-2 \pm 10}{6} \) | \( x = -2 \) and \( x = \frac{4}{3} \) |

| y = 4x² + 6x + 4 | 4x² + 6x + 4 = 0 | \( D = 6^2 - 4*4*4 = 4 \) | \( x = \frac{-6 \pm \sqrt{4}}{8} = \frac{-6 \pm 2}{8} \) | \( x = -1 \) |

| y = x² + 6x + 8 | x² + 6x + 8 = 0 | \( D = 6^2 - 4*1*8 = 4 \) | \( x = \frac{-6 \pm \sqrt{4}}{2} = \frac{-6 \pm 2}{2} \) | \( x = -4 \) and \( x = -2 \) |

| y = -x² - 2x - 48 | -x² - 2x - 48 = 0 | \( D = (-2)^2 - 4*(-1)*(-48) = 208 \) | \( x = \frac{2 \pm \sqrt{208}}{-2} \) | \( x \) is complex (no real solutions) |

| y = 2x² - 10x + 9 | 2x² - 10x + 9 = 0 | \( D = (-10)^2 - 4*2*9 = 4 \) | \( x = \frac{10 \pm \sqrt{4}}{4} = \frac{10 \pm 2}{4} \) | \( x = 3 \) and \( x = \frac{1}{2} \) |

2. **Interpretation**:

- The table shows the quadratic expressions, their corresponding quadratic equations with \( y = 0 \), the calculated discriminants, solutions of the equations, and the x-intersections with the x-axis for each given expression.

- Depending on the discriminant value, we can determine the nature of the solutions (real, repeated, or complex) and the number of x-intercepts each equation has.

By filling in and analyzing the table, we can understand the relationship between the given algebraic expressions, quadratic equations, discriminants, solutions, and their intersections with the x-axis