Find the 95% confidence interval for the population mean when the population standard deviation is 4. The sample mean is 6. Assume that the population has a normal distrobution. Ten items are taken in the sample.

A. 2.74 to 9.26
B. 3.52 to 8.48
C. 4.14 to 7.86
D. 3.56 to 8.44

Respuesta :

Answer:

B. 3.52 to 8.48

Step-by-step explanation:

Finding Confidence Interval by using given Confidence Level:

  1. Find the Z-Scores of the Confidence Level
  2. Using the Z-Score Formula to find the values of the Confidence Interval

Given:

  • Confidence Level = 95%
  • population standard deviation (σ) = 4
  • mean (μ) = 6
  • numbers of sample (n) = 10

For Confidence Level = 95% → which means there are total 5% of the data that lies outside the level with 2.5% on each side, therefore the Confidence Level falls between 2.5% and 97.5% of the total data.

By using the Z-Score table (Normal Distribution Table), we can find:

  • the Z-Score for 2.5% = -1.960
  • the Z-Score for 97.5% = 1.960

Now, we need to find the values which have Z-Scores -1.960 and 1.960 by using the Z-Score Formula for Sampling Distribution:

[tex]\boxed{Z=\frac{x-\mu}{\frac{\sigma}{\sqrt{n} } } }[/tex]

(i) value for Z = -1.960

[tex]\displaystyle Z=\frac{x-\mu}{\frac{\sigma}{\sqrt{n} } }[/tex]

[tex]\displaystyle -1.960=\frac{x-6}{\frac{4}{\sqrt{10} } }[/tex]

[tex]\displaystyle x-6=-1.960\left(\frac{4}{\sqrt{10} } \right)[/tex]

[tex]\displaystyle x=-1.960\left(\frac{4}{\sqrt{10} } \right)+6[/tex]

[tex]\displaystyle x=3.52[/tex]

(i) value for Z = 1.960

[tex]\displaystyle Z=\frac{x-\mu}{\frac{\sigma}{\sqrt{n} } }[/tex]

[tex]\displaystyle 1.960=\frac{x-6}{\frac{4}{\sqrt{10} } }[/tex]

[tex]\displaystyle x-6=1.960\left(\frac{4}{\sqrt{10} } \right)[/tex]

[tex]\displaystyle x=1.960\left(\frac{4}{\sqrt{10} } \right)+6[/tex]

[tex]\displaystyle x=38.48[/tex]

Therefore the 95% Confidence Level lies between 3.52 to 38.48