2
Type the correct answer in the box. Use numerals instead of words. If necessary, use / for the fraction bar.
The mean of a population being sampled is 64, and and the standard deviation is 6.
If the sample size is 50, the standard error of the mean is
. (Round off your answer to the nearest hundredth.)
Reset
Nxt

Respuesta :

msm555

Answer:

0.85

Step-by-step explanation:

To find the standard error of the mean (SEM), we can use the formula:

[tex] \Large\boxed{\boxed{\textsf{SEM} = \dfrac{\textsf{standard deviation}}{\sqrt{\textsf{sample size}}}}} [/tex]

Given:

  • Standard deviation ([tex]\sigma[/tex]) = 6
  • Sample size ([tex]n[/tex]) = 50

in the values:

[tex] \textsf{SEM} = \dfrac{6}{\sqrt{50}} [/tex]

Substitute the value and simplify:

[tex] \textsf{SEM} = \dfrac{6}{\sqrt{50}} \\\\  \approx \dfrac{6}{7.07106781187} \\\\ \approx 0.848528137424 \\\\ \approx 0.85 \textsf{( in nearest hundreth)} [/tex]

Therefore, the standard error of the mean is approximately [tex]0.85[/tex].

Ver imagen msm555