Answer:
[tex] a = 2\sqrt{3} [/tex]
[tex] h = 2\sqrt{2} [/tex]
Step-by-step explanation:
For the left triangle:
Given:
- Angle: [tex]30^\circ[/tex]
- Adjacent side: [tex]3[/tex]
- Hypotenuse: [tex]a[/tex]
We can use the cosine of the angle to relate the adjacent side and the hypotenuse:
[tex] \cos(30^\circ) = \dfrac{\textsf{Adjacent}}{\textsf{Hypotenuse}} [/tex]
[tex] \cos(30^\circ) = \dfrac{3}{a} [/tex]
The cosine of [tex]30^\circ[/tex] is [tex] \dfrac{\sqrt{3}}{2} [/tex], so:
[tex] \dfrac{\sqrt{3}}{2} = \dfrac{3}{a} [/tex]
Now, solve for [tex]a[/tex]:
[tex] a = \dfrac{3}{\dfrac{\sqrt{3}}{2}} [/tex]
[tex] a = \dfrac{3 \times 2}{\sqrt{3}} [/tex]
[tex] a = \dfrac{6}{\sqrt{3}} \times \dfrac{\sqrt{3}}{\sqrt{3}} [/tex]
[tex] a = \dfrac{6\sqrt{3}}{3} [/tex]
[tex] a = 2\sqrt{3} [/tex]
So, the value of [tex]a[/tex] for the left triangle is [tex]2\sqrt{3}[/tex].
For the right triangle:
Given:
- Given: Angle: [tex]45^\circ[/tex]
- Opposite side: [tex]2[/tex]
- Hypotenuse: [tex]h[/tex]
We can use the sine of the angle to relate the opposite side and the hypotenuse:
[tex] \sin(45^\circ) = \dfrac{\textsf{Opposite}}{\textsf{Hypotenuse}} [/tex]
[tex] \sin(45^\circ) = \dfrac{2}{h} [/tex]
The sine of [tex]45^\circ[/tex] is [tex] \dfrac{\sqrt{2}}{2} [/tex], so:
[tex] \dfrac{\sqrt{2}}{2} = \dfrac{2}{h} [/tex]
Now, solve for [tex]h[/tex]:
[tex] h = \dfrac{2}{\dfrac{\sqrt{2}}{2}} [/tex]
[tex] h = \dfrac{2 \times 2}{\sqrt{2}} [/tex]
[tex] h = \dfrac{4}{\sqrt{2}} \times \dfrac{\sqrt{2}}{\sqrt{2}} [/tex]
[tex] h = \dfrac{4\sqrt{2}}{2} [/tex]
[tex] h = 2\sqrt{2} [/tex]
So, the value of [tex]h[/tex] for the right triangle is [tex]2\sqrt{2}[/tex].