Respuesta :

Answer:

SA = 200π cm²

Step-by-step explanation:

The total surface area (SA) of a cone is calculated as

SA = πrl + πr² ( r is the radius and l the slant height )

We require to calculate the slant height l

Using Pythagoras' identity in the right triangle formed by r, h and l

l² = r² + h²

given r = 8 and h = 15 , then

l² = 8² + 15² = 64 + 225 = 289 ( take square root of both sides )

[tex]\sqrt{l^2}[/tex] = [tex]\sqrt{289}[/tex] , then

l = 17

substitute values into the formula for SA

SA = π × 8 × 17 + π × 8²

     = 136π + 64π

     = 200π cm²

Answer:

The total surface area of the cone is 200 cm².

Step-by-step explanation:

To find the total surface area of a cone, we need to calculate the sum of its lateral surface area and its base area.

SA total = A lateral + A base

SA total = πrl + πr²

Given:

Height of the cone (h) = 15 cm

Radius of the cone (r) = 8 cm

First, let's find the slant height (l) of the cone using the Pythagorean theorem:

l = [tex]\sqrt{r^{2}+h^{2} }[/tex]

l = [tex]\sqrt{8^{2}+15^{2} }[/tex]

l = [tex]\sqrt{64 + 225}[/tex]

l = [tex]\sqrt{289}[/tex]

l = 17 cm

Now, let's find the total surface area of a cone:

SA total = A lateral + A base

SA total = πrl + πr²

SA total = (π x 8 x 17) + (π x 8²)

SA total = 136π + 64π

SA total = 200π cm²

So, the total surface area of the cone is 200 cm².