Respuesta :

Answer:

-1.46 and 0.88

Step-by-step explanation:

Formula of the Vertex of Parabola y = ax² + bx + c :

[tex]\boxed{\left(-\frac{b}{2a} ,\ -\frac{b^2-4ac}{4a}\right) }[/tex]

Since, the y-intercept = -9, then c = -9

*Proof: by substituting (0, -9) into y = ax² + bx + c

                                                      -9 = a(0)² + b(0) + c

                                                      [tex]\boxed{\bf c=-9}[/tex]

The Vertex = [tex]\displaystyle\left(-\frac{2}{7} ,\ -9\frac{4}{7} \right)[/tex], which means:

  • [tex]\displaystyle -\frac{b}{2a} =-\frac{2}{7}[/tex]
  • [tex]\displaystyle -\frac{b^2-4ac}{4a} =-9\frac{4}{7}[/tex]

We start with the 1st equation:

[tex]\displaystyle -\frac{b}{2a} =-\frac{2}{7}[/tex]

   [tex]7b=2(2a)[/tex]

     [tex]\displaystyle b=\frac{4a}{7} \ ...\ [1][/tex]

Now, substitute [1] & c-value to the 2nd equation:

[tex]\displaystyle -\frac{b^2-4ac}{4a} =-9\frac{4}{7}[/tex]

[tex]\displaystyle \frac{(\frac{4a}{7} )^2-4a(-9)}{4a} =\frac{67}{7}[/tex]

[tex]\displaystyle 7\left(\frac{16a^2}{49} +36a\right) =67(4a)[/tex]

[tex]\displaystyle \frac{16a^2}{7} +252a =268a[/tex]

[tex]\displaystyle \frac{16a^2}{7}=268a-252a[/tex]

[tex]16a^2=7(16a)[/tex]

[tex]\boxed{\bf a= 7}[/tex]

Substitute a-value with 7 to the 1st equation to find the b-value:

[tex]\displaystyle b=\frac{4a}{7}[/tex]

[tex]\displaystyle b=\frac{4(7)}{7}[/tex]

[tex]\boxed{\bf b=4}[/tex]

With the value of a, b and c, we can find the roots / zeros of the parabola using the Quadratic Roots Formula:

[tex]\boxed{x=\frac{-b\pm\sqrt{b^2-4ac} }{2a} }[/tex]

[tex]\displaystyle x=\frac{-4\pm\sqrt{4^2-4(7)(-9)} }{2(7)}[/tex]

[tex]\boxed{\bf x=-1.46\ and\ 0.88}[/tex]