(i) Probability that both of them do not have any chronic illness:
[tex]P(\neg C \cap \neg C) = P(\neg C) \times P(\neg C) [/tex]
[tex]= (P(\neg C | O) \times P(O)) \times (P(\neg C | \neg O) \times P(\neg O)) [/tex]
[tex]
= (0.4 \times 0.30) \times (0.65 \times 0.70) [/tex]
[tex]= 0.12 \times 0.455 = 0.0546 [/tex]
(ii) Probability that only one of them has a chronic illness:
[tex]P((\neg C \cap C) \cup (C \cap \neg C)) = P(\neg C \cap C) + P(C \cap \neg C) [/tex]
[tex]= (P(\neg C | O) \times P(C | \neg O) \times P(O)) + (P(C | O) \times P(\neg C | \neg O) \times P(\neg O)) [/tex]
[tex]= (0.4 \times 0.35 \times 0.30) + (0.6 \times 0.65 \times 0.70)[/tex]
[tex]= 0.042 + 0.273 = 0.315 [/tex]
(iii) Probability that at least one of them does not have any chronic illness:
[tex]P(\neg C \cup \neg C) = 1 - P(C \cap C) [/tex]
[tex]= 1 - (P(C) \times P(C)) [/tex]
[tex]= 1 - ((P(C | O) \times P(O)) \times (P(C | \neg O) \times P(\neg O))) [/tex]
[tex]= 1 - ((0.6 \times 0.30) \times (0.35 \times 0.70)) [/tex]
[tex]
= 1 - (0.018 + 0.0735) [/tex]
[tex]= 1 - 0.0915 = 0.9085[/tex]
The correct probabilities are:
(i) 0.0546
(ii) 0.315
(iii) 0.9085