Step-by-step explanation:
[tex]for \: 4 {x}^{2} + 11x \: = 2 \\ 4 {x}^{2} + 11x - 2 = 0 \\ by \: using \: quadratic \: formula \: \\ \frac{ - b + \sqrt{ {b}^{2} - 4ac} }{2a} \: \: \: \: \: \: \: \: \: \: \: \: or \: \: \: \: \: \: \: \: \: \: \: \frac{ - b - \sqrt{ {b}^{2} - 4ac} }{2a} \\ \frac{ - 11 + \sqrt{ {11}^{2} - 4 \times 4 \times ( - 2)} }{2 \times 4} \: \: \: \: \: \: or \: \: \: \: \: \: \: \frac{ - 11 - \sqrt{ {11}^{2} - 4 \times 4 \times ( - 2)} }{2 \times 4} \\ \frac{- 11 + \sqrt{153} }{8} \: \: or \: \: \frac{- 11 - \sqrt{153} }{8} \\ x = 0.17 \: \: \: \: or \: \: \: - 2.92 \\ for \: x - 8 - 2x = 0 \\ - x - 8 = 0 \\ then \: x = - 8 \\ for \: x(x - 7) + 12 \\ {x}^{2} - 7x + 12 = 0 \\ (x - 4)(x - 3) = 0 \\ then \: x = 4 \: \: \: or \: \: 3[/tex]