Respuesta :

Answer:

Approx 545.32mm^2

Step-by-step explanation:

given:

radius (r):32mm

angle(a)=61 degree

firstly:

61 degrees in percentege:

(61/360)/100%

=16.944444444444%

then,

area of circle:

pi*r^2

(22/7)*32^2

=3218.285714

finally,

16.944444444444%of 3218.285714

=545.3206349 mm^2

OR,

use the formula (θ/360)*(22/7)*r^2

i.e(61/360)*(22/7)*(32)^2

=545.3206349

approx=545.32

Answer:

545.1 mm²

Step-by-step explanation:

The ratio of the central angle of the sector to 360° = ratio of area of sector to area of circle

Since area of circle = [tex]\pi r^2[/tex]

The area of a sector can be determined by the relation:

[tex]\text{Area of sector} = \pi \times r^2 \times \dfrac{\text{Central Angle}}{360}\\= \pi \times 32^2 \times \dfrac{61}{360}\\\\= 545.1 \;\;mm^2[/tex]