question is linked....

Answer:
[tex]2x-y=4[/tex]
Step-by-step explanation:
[tex]\text{The equation of the line passing through the points }(x_1,y_1)\text{ and }(x_2,y_2)\text{ is}\\\text{given by:}[/tex]
[tex]y-y_1=\dfrac{y_2-y_1}{x_2-x_1}(x-x_1)[/tex]
[tex]\text{This is also called the }\bold{two\ points\ form.}[/tex]
[tex]\text{In this case, let }(x_1,y_1)=(7,10)\text{ and }(x_2,y_2)=(3,2)[/tex]
[tex]\text{So the equation of line AB is:}[/tex]
[tex]y-10=\dfrac{2-10}{3-7}(x-7)\\\\\text{or, }y-10=\dfrac{-8}{-4}(x-7)\\\\\text{or, }y-10=2(x-7)\\\text{or, }y-10=2x-14\\\text{or, }2x-y=4\text{ is the required equation.}[/tex]