Respuesta :

Answer:

[tex]h = 5\, c^{3}[/tex].

When [tex]c = 5[/tex], [tex]h = 625[/tex].

Step-by-step explanation:

Since [tex]h[/tex] is proportional to the cube of [tex]c[/tex], it would be possible to find some constant [tex]k[/tex] such that for all [tex]c\![/tex]:

[tex]h = k\, c^{3}[/tex].

The next step is to find [tex]k[/tex]. Given that [tex]h = 40[/tex] when [tex]c = 2[/tex]:

[tex]40 = k\, (2)^{3}[/tex].

Solve for [tex]k[/tex] to obtain:

[tex]\displaystyle k = \frac{40}{2^{3}} = 5[/tex].

In other words:

[tex]h = 5\, c^{3}[/tex].

To find the value of [tex]h[/tex] when [tex]c = 5[/tex], substitute the value of [tex]c[/tex] into the expression and evaluate:

[tex]h = 5\, (5)^{3} = 625[/tex].

In other words, [tex]h = 625[/tex] when [tex]c = 5[/tex].