Answer:
$9,396
Step-by-step explanation:
Jane bought a new car for $18,000. To find the value of the car at the end of 4 years after depreciating by 15% each year, we can use the formula for exponential decay:
[tex]\boxed{\begin{array}{l}\underline{\textsf{Exponential Decay}}\\\\A=P(1-r)^{t}\\\\\textsf{where:}\\\phantom{ww}\bullet\;\textsf{$A$ is the final value.}\\\phantom{ww}\bullet\;\textsf{$P$ is the initial value.}\\\phantom{ww}\bullet\;\textsf{$r$ is the rate of decay (in decimal form).}\\\phantom{ww}\bullet\;\textsf{$t$ is the time (in years).}\end{array}}[/tex]
In this case:
- P = $18,000
- r = 15% = 0.15
- t = 4 years
Substitute the values into the formula and solve for A:
[tex]A=18000(1-0.15)^4\\\\A=18000(0.85)^4\\\\A=18000(0.52200625)\\\\A=9396.1125\\\\A=\$9396\; \sf (nearest\;dollar)[/tex]
So, the value of the car at the end of 4 years rounded to the nearest dollar is:
[tex]\LARGE\boxed{\boxed{\sf \$9,396 }}[/tex]