Respuesta :

Answer:

The equation is (a+1)² - 56 = 0

Step-by-step explanation:

To solve the quadratic equation a² + 2a - 50 = 5 by completing the square, we can work this way:

First, we find the expansion form of a expanded square equation:

[tex]\boxed{(ax+b)^2=(a^2)x^2+(2ab)x+(b^2)}[/tex]

[tex]a^2+2a-50=5[/tex]

[tex]a^2+2a-55=0[/tex]

Let [tex]a^2+2a-55=0[/tex] is equivalent to [tex](pa+q)^2+r=0[/tex], then:

[tex]a^2+2a-55\equiv(pa+q)^2+r[/tex]

[tex]a^2+2a-55\equiv(p^2)a^2+(2pq)a+(n^2+r)[/tex]

Then we can conclude that:

  • [tex]p^2=1\ ...\ [1][/tex]
  • [tex]2pq=2\ ...\ [2][/tex]
  • [tex]q^2+r=-55\ ...\ [3][/tex]

[1]

[tex]p^2=1[/tex]

[tex]p=1[/tex]

[2]

[tex]2pq=2[/tex]

[tex]2(1)q=2[/tex]

[tex]q=1[/tex]

[3]

[tex]q^2+r=-55[/tex]

[tex]1^2+r=-55[/tex]

[tex]r=-56[/tex]

With the know value of p, q and r, we can conclude that the equation is (a+1)² - 56 = 0