!!!!!!!!!!! 100 POINTS !!!!!!!!!!!!!!!!!!! ENSURE YOUR ANSWER IS CORRECT BEFORE POSTING !!!!!
(Past Paper Revision)
How would you go about solving this? Please provide formulae, rules, explanation / working out . Thank you in advance!

100 POINTS ENSURE YOUR ANSWER IS CORRECT BEFORE POSTING Past Paper Revision How would you go about solving this Please provide formulae rules explanation worki class=

Respuesta :

Answer:

[tex]\sf a= {\dfrac{4y-3}{-2y+3}}[/tex]  where p = 4, q = -3, r = -2, s = 3

Step-by-step explanation:

Given following:

[tex]\sf a= \dfrac{14}{3x-7}[/tex] and  [tex]\sf x= \dfrac{7}{4y-3}[/tex]

To find a in terms of y then substitute x into the equation of a

[tex]\rightarrow \sf a= \dfrac{14}{3x-7}[/tex]

substitute

[tex]\rightarrow \sf a= \dfrac{14}{3(\dfrac{7}{4y-3})-7}[/tex]

simplify

[tex]\rightarrow \sf a= \dfrac{14}{\dfrac{21}{4y-3}-7}[/tex]

make the denominator same

[tex]\rightarrow \sf a= \dfrac{14}{\dfrac{21}{4y-3}-\dfrac{28y-21}{4y-3}}[/tex]

join fractions

[tex]\rightarrow \sf a= \dfrac{14}{\dfrac{21-(28y-21)}{4y-3}}[/tex]

simplify

[tex]\rightarrow \sf a= \dfrac{14}{\dfrac{21-28y+21}{4y-3}}[/tex]

use basic rules:

[tex]\rightarrow \sf a= \dfrac{14}{\dfrac{42-28y}{4y-3}}[/tex]

[tex]\rightarrow \sf a= 14 \div {\dfrac{42-28y}{4y-3}}[/tex]

[tex]\rightarrow \sf a= 14 \cdot {\dfrac{4y-3}{42-28y}}[/tex]

[tex]\rightarrow \sf a= {\dfrac{56y-42}{42-28y}}[/tex]

simplify (all the variables are factor of 14)

[tex]\rightarrow \sf a= {\dfrac{4y-3}{3-2y}}[/tex]

Answer:

[tex]a=\dfrac{4y-3}{-2y+3}[/tex]

Step-by-step explanation:

Given:

[tex]a=\dfrac{14}{3x-7}[/tex]

[tex]x=\dfrac{7}{4y-3}[/tex]

Substitute the expression for x into the expression for a:

[tex]a=\dfrac{14}{3\left(\dfrac{7}{4y-3}\right)-7}[/tex]

Simplify the denominator:

[tex]a=\dfrac{14}{\dfrac{21}{4y-3}-\dfrac{7(4y-3)}{4y-3}}[/tex]

[tex]a=\dfrac{14}{\dfrac{21-7(4y-3)}{4y-3}}[/tex]

[tex]a=\dfrac{14}{\left(\dfrac{21-28y+21}{4y-3}\right)}[/tex]

[tex]a=\dfrac{14}{\left(\dfrac{-28y+42}{4y-3}\right)}[/tex]

[tex]a=14 \times \dfrac{4y-3}{-28y+42}[/tex]

[tex]a=\dfrac{14(4y-3)}{-28y+42}[/tex]

Factor out 14 from the denominator:

[tex]a=\dfrac{14(4y-3)}{14(-2y+3)}[/tex]

Cancel the common factor 14:

[tex]a=\dfrac{4y-3}{-2y+3}[/tex]

Therefore:

  • p = 4
  • q = -3
  • r = -2
  • s = 3