Three masses have the following (x.y.z) coordinates: 2.0 kg at (-5.0.-10.-2.0), 5.0 kg at (1.0,-3.0.5.0), and 3.0 kg at (-4.0,-1.0.-2.0).
Determine the coordinates of the center of mass.
a. (-16.1.5.-2.1)
b. (-2.7.-17.0.33)
c. (15.3.0.1.4)
d. (-1.7.-2.0.1.5

Respuesta :

Answer:

[tex](-1.7,\, -3.8,\, 1.5)[/tex].

Explanation:

If that there are [tex]n[/tex] point mass in space, the position vector of the center of mass would be the average of the position vectors [tex]\vec{x}_{1},\, \dots,\, \vec{x}_{n}[/tex] of these objects, weighted according to the mass [tex]m_{1},\, \dots,\, m_{n}[/tex] of each object:

[tex]\displaystyle \frac{m_{1}\, \vec{x}_{1} + \cdots + m_{n}\, \vec{x}_{n}}{m_{1} + \cdots + m_{n}}[/tex].

In this question:

  • [tex]m_{1} = 2.0\; {\rm kg}[/tex], [tex]\vec{x}_{1} = \langle -5.0,\, -10,\, -2.0\rangle[/tex].
  • [tex]m_{2} = 5.0\; {\rm kg}[/tex], [tex]\vec{x}_{2} = \langle 1.0,\, -3.0,\, 5.0\rangle[/tex].
  • [tex]m_{3} = 3.0\; {\rm kg}[/tex], [tex]\vec{x}_{3} = \langle -4.0,\, -1.0,\, -2.0\rangle[/tex].

The position vector of the center of mass of these objects would be:

[tex]\displaystyle \frac{m_{1}\, \vec{x}_{1} + m_{2}\, \vec{x}_{2} + m_{3}\, \vec{x}_{3}}{m_{1} + m_{2} + m_{3}}[/tex].

[tex]\begin{aligned}& \frac{(2.0\; {\rm kg})\, \begin{bmatrix}-5.0 \\ -10 \\ -2.0\end{bmatrix} + (5.0\; {\rm kg})\, \begin{bmatrix}1.0 \\ -3.0 \\ 5.0\end{bmatrix} + (3.0\; {\rm kg})\, \begin{bmatrix}-4.0 \\ -1.0 \\ -2.0\end{bmatrix}}{2.0\; {\rm kg} + 5.0\; {\rm kg} + 3.0\; {\rm kg}}} \\ =\; & \frac{1}{10}\, \begin{bmatrix}-17 \\ -38 \\ 15\end{bmatrix} \\ =\; & \begin{bmatrix}-1.7 \\ -3.8 \\ 1.5\end{bmatrix}\end{aligned}[/tex].

In other words, the center of mass of these three objects would be at [tex](-1.7,\, -3.8,\, 1.5)[/tex].