Respuesta :

Answer:

b ≈ 7

Step-by-step explanation:

In this question we are given a right angled triangle whose hypotenuse is √150 units , perpendicular height is 10 units and we have to find the measure of its base that is b.

Solution :

Here for finding the length of b , we are using Pythagoras Theorem i.e. :

[tex] \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \boxed{\sf{P²+ B²=H²}}[/tex]

Where ,

  • P refers to Perpendicular

  • B refers to Base

  • H refers to Hypotenuse

[tex] \sf{ \longmapsto \: \: \: (10) {}^{2} + (b) {}^{2} = (\sqrt{150}) {}^{2} }[/tex]

[tex] \sf{ \longmapsto \: \: \:100 + b {}^{2} =150 } [/tex]

[tex]\sf{ \longmapsto \: \: \: b {}^{2} =150 - 100 } [/tex]

[tex]\sf{ \longmapsto \: \: \: b {}^{2} =50 } [/tex]

[tex]\sf{ \longmapsto \: \: \: b = \sqrt{ 50 }} [/tex]

[tex]\sf{ \longmapsto \: \: \: \underline{ \boxed{ \bold{b ≈7 } }}} \: \: \: \: \bigstar[/tex]

>>> Therefore, b is approximately "7".