Respuesta :

Answer: To solve the differential equation \( \frac{{dx}}{{dy}} = 3x^2 - 6x \), we can rearrange it and integrate both sides with respect to \(x\):

\[

\begin{split}

\frac{{dx}}{{dy}} &= 3x^2 - 6x \\

\Rightarrow \frac{{dx}}{{3x^2 - 6x}} &= dy

\end{split}

\]

Now, we integrate both sides:

\[

\begin{split}

\int \frac{{dx}}{{3x^2 - 6x}} &= \int dy \\

\end{split}

\]

The integral on the left side can be simplified by factoring out a common factor in the denominator:

\[

\begin{split}

\int \frac{{dx}}{{3x(x - 2)}} &= \int dy \\

\end{split}

\]

Now, we can perform partial fraction decomposition:

\[

\frac{{1}}{{3x(x - 2)}} = \frac{{A}}{{3x}} + \frac{{B}}{{x - 2}}

\]

Multiplying both sides by \(3x(x - 2)\), we get:

\[

1 = A(x - 2) + 3Bx

\]

Let's find the values of \(A\) and \(B\). Setting \(x = 0\), we get:

\[

1 = -2A \implies A = -\frac{1}{2}

\]

Setting \(x = 2\), we get:

\[

1 = 2B \implies B = \frac{1}{2}

\]

So, our integral becomes:

\[

\begin{split}

\int \left( -\frac{1}{2x} + \frac{1}{2(x - 2)} \right) dx &= \int dy \\

-\frac{1}{2} \int \frac{1}{x} dx + \frac{1}{2} \int \frac{1}{x - 2} dx &= \int dy \\

-\frac{1}{2} \ln|x| + \frac{1}{2} \ln|x - 2| &= y + C

\end{split}

\]

Where \(C\) is the constant of integration. Therefore, the solution to the differential equation is:

\[

-\frac{1}{2} \ln|x| + \frac{1}{2} \ln|x - 2| = y + C

\]