Respuesta :
Answer:
The table represents a linear function because the graph shows a constant rate of change.
Step-by-step explanation:
To determine whether the data represents a linear or non-linear function:
In the linear function, the rate of change of y with respect to x remains the same/constant. The rate of change is called the slope.
[tex]\boxed{\sf Slope =\dfrac{difference \ in \ y}{difference \ in \ x} =\dfrac{y_2-y_1}{x_2-x_1}}[/tex]
Find the rate of change. If the rater of change is constant, then its is linear function.
- (-4,4) & (-1 ,2.5)
[tex]\sf \dfrac{y_2-y_1}{x_2-x_1}=\dfrac{2.5-4}{-1-(-4)}[/tex]
[tex]\sf = \dfrac{-1.5}{-1+4}=\dfrac{-1.5}{3}\\\\\\=\dfrac{-1.5*10}{3*10}=\dfrac{-15}{30}\\\\\\=\dfrac{-1}{2}[/tex]
- ((-1,2.5) & (0,2)
[tex]\sf \dfrac{y_2-y_1}{x_2-x_1}=\dfrac{2-2.5}{0-(-1)}\\\\\\~~~~~~~~~~=\dfrac{-0.5}{1}=\dfrac{-0.5*10}{1*10}\\\\\\~~~~~~~~~~=\dfrac{5}{10}\\\\\\~~~~~~~~~~=\dfrac{1}{2}\\[/tex]
- (0,2) & (4, 0)
[tex]\sf \dfrac{y_2-y_1}{x_2-x_1}=\dfrac{0-2}{4-0}\\\\\\~~~~~~~~~~~ =\dfrac{2}{4}\\\\~~~~~~~~~~~ = \dfrac{1}{2}[/tex]
As the rate of change is constant, the given data represents linear function.