Answer:
1) Linear function: [tex]\sf S(x) = \$400 + 0.13x [/tex]
2) [tex]\sf S(\$8000) =\$ 1440 [/tex]
Step-by-step explanation:
(a) To model the sales person's weekly salary [tex]\bold{\sf S(x)}[/tex] based on sales [tex]\bold{\sf x}[/tex], we can use the following linear function:
[tex]\sf S(x) = \$400 + 13\%\textsf{ of x} [/tex]
[tex]\sf S(x) = \$400 + 0.13x [/tex]
In this function:
- [tex]\bold{\sf \$400}[/tex] represents the base salary per week.
- - [tex]\bold{\sf 0.13x}[/tex] represents the commission earned based on sales [tex]\bold{\sf x}[/tex],
- where [tex]\bold{\sf 0.13}[/tex] (or [tex]\bold{\sf 13\%}[/tex]) is the commission rate.
Therefore, [tex]\bold{\sf S(x)}[/tex] gives the total weekly salary for a given amount of sales [tex]\bold{\sf x}[/tex].
(b) To evaluate [tex]\bold{\sf S(\$8000)}[/tex], substitute [tex]\bold{\sf \$8000}[/tex] for [tex]\bold{\sf x}[/tex] in the function [tex]\bold{\sf S(x)}[/tex]:
[tex]\sf S(\$ 8000) = \$400 + 0.13(\$8000) [/tex]
[tex]\sf S(\$ 8000) = \$ 400 +\$ 1040 [/tex]
[tex]\sf S(\$ 8000) = \$ 1440 [/tex]
Interpretation:
When [tex]\bold{\sf x = \$ 8000}[/tex] dollars in sales, the sales person's weekly salary [tex]\bold{\sf S(8000)}[/tex] will be [tex]\bold{\sf 1440}[/tex] dollars. This total includes the base salary of [tex]\bold{\sf 400}[/tex] dollars per week plus [tex]\bold{\sf 13\%}[/tex] commission on sales, which amounts to [tex]\bold{\sf 1040}[/tex] dollars ([tex]\bold{\sf 0.13 \times 8000}[/tex]) for the week.