14. Find the value of tan V rounded to the nearest hundredth, if necessary.
V
tan V =
14
U
50
48
T

Answer:
tan V = 3.43
Step-by-step explanation:
To solve for [tex]\bold{\sf \tan V }[/tex] in triangle [tex]\bold{\sf TUV }[/tex], we can use trigonometric ratios in a right triangle.
Given:
We can use the definition of tangent ([tex]\bold{\sf \tan }[/tex]) in a right triangle:
[tex]\large\boxed{\boxed{\sf \tan V = \dfrac{\textsf{opposite}}{\textsf{adjacent}}}} [/tex]
In triangle [tex]\bold{\sf TUV }[/tex], [tex]\bold{\sf V }[/tex] is the acute angle opposite the side [tex]\bold{\sf TU }[/tex] (the opposite side) and adjacent to the side [tex]\bold{\sf UV }[/tex] (the adjacent side).
Identify the opposite and adjacent sides:
Apply the tangent ratio:
[tex]\sf \tan V = \dfrac{TU}{UV} [/tex]
[tex]\sf \tan V = \dfrac{48}{14} [/tex]
Simplify the tangent ratio:
[tex]\sf \tan V = \dfrac{48}{14} [/tex]
[tex]\sf \tan V = 3.4285714285714 [/tex]
[tex]\sf \tan V =3.43 \textsf{ (in nearest hundredth)}[/tex]
Therefore, [tex]\bold{\sf \tan V }[/tex] is approximately [tex]\bold{\sf \boxed{3.43} }[/tex].
Answer:
3.43
Step-by-step explanation:
The tangent ratio of an angle in a right triangle is the ratio of the side opposite of the angle to the side adjacent to the angle.
[tex]\boxed{\begin{array}{l}\underline{\textsf{Tangent trigonometric ratio}}\\\\\sf \tan(\theta)=\dfrac{O}{A}\\\\\textsf{where:}\\\phantom{ww}\bullet\;\textsf{$\theta$ is the angle.}\\\phantom{ww}\bullet\;\textsf{$O$ is the side opposite the angle.}\\\phantom{ww}\bullet\;\textsf{$A$ is the side adjacent the angle.}\end{array}}[/tex]
In this case:
Substitute the values into the ratio and solve for tan V:
[tex]\tan V=\dfrac{48}{14}\\\\\\\tan V=3.42857142857...\\\\\\\tan V=3.43\; \sf (nearest\;tenth)[/tex]
Therefore, the value of tan V rounded to the nearest hundredth is:
[tex]\Large\text{$\tan V=\boxed{3.43}$}[/tex]