Einar
contestada

The cubic polynomial P(x) = ax^3 + bx^2 + cx + d touches the line with equation y = 9x + 2 at the point (0, 2), and has a stationary point (-1, -7). Find P(x)

Respuesta :

hello here is a solution : 
Ver imagen ghanami
Ver imagen ghanami

Polynomials are expressions that uses variables, constants and exponents.

The polynomial is: [tex]\mathbf{P(x) = -9x^3 - 9x^2 + 9x + 2}[/tex]

The polynomial is given as:

[tex]\mathbf{P(x) = ax^3 + bx^2 + cx + d}[/tex]

[tex]\mathbf{y = 9x + 2}[/tex]

At (0,2), we have:

[tex]\mathbf{a(0)^3 + b(0)^2 + c(0) + d= 2}[/tex]

[tex]\mathbf{d= 2}[/tex]

At  (-1,-7), we have:

[tex]\mathbf{a(-1)^3 + b(-1)^2 + c(-1) + d= -7}[/tex]

[tex]\mathbf{-a + b - c + d= -7}[/tex]

Substitute

[tex]\mathbf{-a + b - c + 2= -7}[/tex]

Subtract 2 from both sides

[tex]\mathbf{-a + b - c = -9}[/tex]

Recall that:

[tex]\mathbf{P(x) = ax^3 + bx^2 + cx + d}[/tex]

Integrate

[tex]\mathbf{P'(x) = 3ax^2 + 2bx + c}[/tex]

We have:

[tex]\mathbf{y = 9x + 2}[/tex]

Integrate

[tex]\mathbf{y' = 9}[/tex]

The above means that:

[tex]\mathbf{P'(0) = 9}[/tex]

So, we have:

[tex]\mathbf{P'(x) = 3ax^2 + 2bx + c}[/tex]

[tex]\mathbf{3a(0)^2 + 2b(0) + c = 9}[/tex]

[tex]\mathbf{c = 9}[/tex]

Substitute 9 for c in [tex]\mathbf{-a + b - c = -9}[/tex]

[tex]\mathbf{-a + b - 9 = -9}[/tex]

Add 9 to both sides

[tex]\mathbf{-a + b = 0}[/tex]

So, we have:

[tex]\mathbf{a = b }[/tex]

The line touches [tex]\mathbf{y = 9x + 2}[/tex] means that:

[tex]\mathbf{P'(-1) = 0}[/tex]

So, we have:

[tex]\mathbf{P'(x) = 3ax^2 + 2bx + c}[/tex]

[tex]\mathbf{3a(-1)^2 - 2b + c = 0}[/tex]

[tex]\mathbf{3a - 2b + c = 0}[/tex]

Substitute 9 for c

[tex]\mathbf{3a - 2b + 9 = 0}[/tex]

Recall that: [tex]\mathbf{a = b }[/tex]

[tex]\mathbf{3a - 2a + 9 = 0}[/tex]

[tex]\mathbf{a + 9 = 0}[/tex]

[tex]\mathbf{a =- 9}[/tex]

So, we have:

[tex]\mathbf{a =b = - 9}[/tex]

Substitute [tex]\mathbf{a =b = - 9}[/tex], [tex]\mathbf{c = 9}[/tex] and [tex]\mathbf{d= 2}[/tex] in [tex]\mathbf{P(x) = ax^3 + bx^2 + cx + d}[/tex]

So, we have:

[tex]\mathbf{P(x) = -9x^3 - 9x^2 + 9x + 2}[/tex]

Hence, the polynomial is:

[tex]\mathbf{P(x) = -9x^3 - 9x^2 + 9x + 2}[/tex]

Read more about polynomials at:

https://brainly.com/question/11536910