Two sides of an obtuse triangle measure 10 inches and 15 inches. The length of longest side is unknown.

What is the smallest possible whole-number length of the unknown side?

Respuesta :


10^2 (10 squared) + 15^2 = C^2 
100+225=c^2
325=c^2
325
25⋅13
 
25 ⋅13
5√ 13√325≈18.027756377319946
The whole number would be 
5√ 13
It's the converse of the Pythagorean theorem.  

Ver imagen paigesweeney4

Answer:

The smallest possible whole-number length of the unknown side is [tex]19\ inches[/tex]

Step-by-step explanation:

we know that

The triangle inequality theorem, states that the sum of the lengths of any two sides of a triangle is greater than the length of the third side

Let

x-----> the length of longest side

Applying the triangle inequality theorem

case A)

[tex]10+15 > x[/tex]

[tex]25 > x[/tex]

Rewrite

[tex]x< 25[/tex]

case B)

[tex]10+x > 15[/tex]

[tex]x > 15-10[/tex]

[tex]x> 5[/tex]

The solution of the third side is the interval-------> [tex](5,25)[/tex]

but remember that

In an obtuse triangle

[tex]x^{2} > a^{2} +b^{2}[/tex]

[tex]x^{2} > 15^{2} +10^{2}[/tex]

[tex]x > 18.03\ inches[/tex]

Round to a whole number

[tex]x= 19\ inches[/tex]