What is the product of (p3)(2p2 - 4p)(3p2 - 1)?

A) 6p7 + 4p4

B) 6p7- 2p5 - 12p5 + 4p3

C) 6p7 - 12p6 - 2p5 + 4p4

D) 6p12 - 14p6 + 4p3

Respuesta :

The answer is actually C

Answer

Find out the product of ( p³)(2p² - 4p)(3p² - 1) .

To prove

The expression given in the question

=  ( p³) × (2p² - 4p) × (3p² - 1)

First multiply first two terms

=  ( p³ × 2p² - p³ × 4p)(3p² - 1)

Now using the exponent property

[tex]x^{a}.x^{b} = x ^{a + b}[/tex]

[tex]= (2p^{2+3} - 4p^{3+1})(3p^{2} -1)[/tex]

[tex]= (2p^{5} - 4p^{4})(3p^{2} -1)[/tex]

Again multiply the terms

[tex]= (2p^{5}\times 3p^{2} - 4p^{4}\times 3p^{2} - 2p^{5} + 4p^{4})[/tex]

[tex]= (6p^{5+2} - 12p^{4+2} - 2p^{5} + 4p^{4})[/tex]

[tex]= (6p^{7} - 12p^{6} - 2p^{5} + 4p^{4})[/tex]

Therefore the option (C) is correct.